Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neurobiol Dis ; 136: 104743, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31931138

RESUMO

Rho GTPases play a central role in neuronal survival; however, the antagonistic relationship between Rac and Rho in the regulation of motor neuron survival remains poorly defined. In the current study, we demonstrate that treatment with NSC23766, a selective inhibitor of the Rac-specific guanine nucleotide exchange factors, Tiam1 and Trio, is sufficient to induce the death of embryonic stem cell (ESC)-derived motor neurons. The mode of cell death is primarily apoptotic and is characterized by caspase-3 activation, de-phosphorylation of ERK5 and AKT, and nuclear translocation of the BH3-only protein Bad. As opposed to the inhibition of Rac, motor neuron cell death is also induced by constitutive activation of Rho, via a mechanism that depends on Rho kinase (ROCK) activity. Investigation of Rac and Rho in the G93A mutant, human Cu, Zn-superoxide dismutase (hSOD1) mouse model of amyotrophic lateral sclerosis (ALS), revealed that active Rac1-GTP is markedly decreased in spinal cord motor neurons of transgenic mice at disease onset and end-stage, when compared to age-matched wild type (WT) littermates. Furthermore, although there is no significant change in active RhoA-GTP, total RhoB displays a striking redistribution from motor neuron nuclei in WT mouse spinal cord to motor neuron axons in end-stage G93A mutant hSOD1 mice. Collectively, these data suggest that the intricate balance between pro-survival Rac signaling and pro-apoptotic Rho/ROCK signaling is critical for motor neuron survival and therefore, disruption in the balance of their activities and/or localization may contribute to the death of motor neurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Neurônios Motores/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase/fisiologia , Quinases Associadas a rho/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Morte Celular/fisiologia , Feminino , GTP Fosfo-Hidrolases/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Mutação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Quinases Associadas a rho/genética
3.
Nutr Neurosci ; 21(6): 414-426, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28276271

RESUMO

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting from the death of motor neurons in the brain, brain stem, and spinal cord. Several processes such as oxidative stress, neuroinflammation, and neuronal apoptosis, contribute to disease progression. Anthocyanins are flavonoid compounds derived from fruits and vegetables that possess antioxidant, anti-inflammatory, and anti-apoptotic abilities. Thus, these unique compounds may provide therapeutic benefit for the treatment of ALS. METHODS: We used the G93A mutant human SOD1 (hSOD1G93A) mouse model of ALS to assess the effects of an anthocyanin-enriched extract from strawberries (SAE) on disease onset and progression. Mice were administered SAE orally beginning at 60 days of age until end-stage such that mice received 2 mg/kg/day of the extract's primary anthocyanin constituent. Clinical indices of disease were assessed until mice were sacrificed at end-stage. Histopathological indices of disease progression were also evaluated at 105 days of age. RESULTS: hSOD1G93A mice supplemented with SAE experienced a marked (∼17 day) delay in disease onset and a statistically significant (∼11 day) extension in survival in comparison to their untreated mutant counterparts. Additionally, SAE-treated hSOD1G93A mice displayed significantly preserved grip strength throughout disease progression. Histopathological analysis demonstrated that SAE supplementation significantly reduced astrogliosis in spinal cord, and preserved neuromuscular junctions (NMJs) in gastrocnemius muscle. DISCUSSION: These data are the first to demonstrate that anthocyanins have significant potential as therapeutic agents in a preclinical model of ALS due to their ability to reduce astrogliosis in spinal cord and preserve NMJ integrity and muscle function. Therefore, further study of these compounds is warranted in additional preclinical models of ALS and other neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Antocianinas/farmacologia , Fragaria/química , Extratos Vegetais/farmacologia , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Peso Corporal , Modelos Animais de Doenças , Progressão da Doença , Feminino , Gliose/tratamento farmacológico , Gliose/prevenção & controle , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
J Biol Chem ; 290(15): 9363-76, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25666619

RESUMO

Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad.


Assuntos
Apoptose/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Aminoquinolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Células Cultivadas , Cerebelo/citologia , Feminino , Immunoblotting , MAP Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/antagonistas & inibidores
5.
Biomol Concepts ; 5(6): 489-511, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25429601

RESUMO

C-terminal binding proteins (CtBPs) were initially identified as binding partners for the E1A-transforming proteins. Although the invertebrate genome encodes one CtBP protein, two CtBPs (CtBP1 and CtBP2) are encoded by the vertebrate genome and perform both unique and duplicative functions. CtBP1 and CtBP2 are closely related and act as transcriptional corepressors when activated by nicotinamide adenine dinucleotide binding to their dehydrogenase domains. CtBPs exert transcriptional repression primarily via recruitment of a corepressor complex to DNA that consists of histone deacetylases (HDACs) and histone methyltransferases, although CtBPs can also repress transcription through HDAC-independent mechanisms. More recent studies have demonstrated a critical function for CtBPs in the transcriptional repression of pro-apoptotic genes such as Bax, Puma, Bik, and Noxa. Nonetheless, although recent efforts have characterized the essential involvement of CtBPs in promoting cellular survival, the dysregulation of CtBPs in both neurodegenerative disease and cancers remains to be fully elucidated.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Animais , Apoptose , Sobrevivência Celular , Proteínas Correpressoras , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Crescimento e Desenvolvimento , Humanos , NAD/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Conformação Proteica , Processamento de Proteína Pós-Traducional , Ativação Transcricional
6.
Front Cell Neurosci ; 8: 314, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25339865

RESUMO

The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell-cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis.

7.
Mol Cell Neurosci ; 56: 322-332, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23859824

RESUMO

C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficient to cause CGN apoptosis. Similarly, the CtBP inhibitor, 4-methylthio-2-oxobutyric acid, induces expression of the CtBP target Noxa and causes actinomycin-sensitive CGN apoptosis. Unexpectedly, we found that the mechanism of CtBP downregulation in CGNs undergoing apoptosis varies in a stimulus-specific manner involving either the proteasome or caspases. In the case of CGNs deprived of depolarizing potassium (5K apoptotic condition), caspases appear to play a dominant role in CtBP downregulation. However, incubation in 5K does not enhance the kinetics of CtBP1 degradation and recombinant CtBP1 is not cleaved in vitro by caspase-3. In addition, 5K has no significant effect on CtBP transcript expression. Finally, mouse embryonic stem cells display caspase-dependent downregulation of CtBP1 following exposure to staurosporine, an effect that is not observed in DGCR8 knockout cells which are deficient in miRNA processing. These data identify caspase-dependent downregulation of CtBPs as an alternative mechanism to the proteasome for regulation of these transcriptional co-repressors in neurons undergoing apoptosis. Moreover, caspases appear to regulate CtBP expression indirectly, at a post-transcriptional level, and via a mechanism that is dependent upon miRNA processing. We conclude that CtBPs are essential pro-survival proteins in neurons and their downregulation contributes significantly to neuronal apoptosis via the de-repression of pro-apoptotic genes.


Assuntos
Apoptose , Proteínas de Transporte/metabolismo , Regulação para Baixo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Caspase 3/metabolismo , Feminino , Masculino , Metionina/análogos & derivados , Metionina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Estaurosporina/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
8.
J Biol Chem ; 287(20): 16835-48, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22378792

RESUMO

In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Cerebelo/metabolismo , Neurônios/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Animais , Células Cultivadas , Cerebelo/citologia , Camundongos , Camundongos Knockout , Mutação , Neurônios/citologia , Fosforilação/efeitos dos fármacos , Ratos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/genética , Transdução de Sinais/genética , Triterpenos/farmacologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA